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In a continuation of previous work, we extend the general method of generating 
Clifford algebras based on a nonstandard intermediate step in the direct product 
procedure. This greatly simplifies the construction of the hierarchies of even- 
and odd-order Clifford algebras and facilitates comparison with other generating 
methods. Four other methods are compared. Various representations of Dirac 
matrices are derived in a unified way following our method. 

1. I N T R O D U C T I O N  

Since the pioneering work of Hestenes (1966; Hestenes and Sobczyk, 
1984), the interest of  physicists in Clifford algebras has increased sig- 
nificantly. Although a Clifford algebra (CA) has essentially only one 
inequivalent irreducible representation (Li et al., 1986), for physical applica- 
tions it is important  to have a simple representation based, if possible, on 
the familiar Pauli-type matrices. Over the years many kinds of  generating 
methods have been developed which differ widely from each other, and a 
general method that unifies the existing methods is lacking. In a previous 
article (Li et al., 1986) we proposed a systematic general generating method 
(GM) for constructing higher order Clifford algebras from lower order ones. 
This method encompasses all possible binary generating methods and deals 
with universal Clifford algebras, so it also provides a systematic classification 
of  universal Clifford algebras (Li et al., 1986). In this article we present an 
extended version of GM, denoted EGM, which makes the construction 
even simpler and the connection with other methods more straightforward. 
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The idea is to utilize a nonstandard "primitive generating set" (PGS) which 
differs from the standard one by the addition of just one element, the 
canonical element o'(m), and the added element denoted by s247 can be 
either 00(m) or i00(m). We will show that this makes the generating procedure 
more flexible and permits it to be condensed in a simple formula. 

In Section 2 we begin by summarizing some important facts about 
Clifford algebras, meaning universal ones if not otherwise specified, and 
we fix the notation. Then in Section 3 we give a brief summary of our earlier 
GM, paving the way for presenting the extended generating method in 
Section 4, where a compact generating formula is derived. Section 5 applies 
the method to double field algebras. The relationships with our previous 
procedures (Li et al., 1986) and with various other generating methods are 
discussed in Sections 6 and 7, respectively. Finally, representations of the 
Dirac algebra are treated in a unified way in Section 8 and some concluding 
remarks are made in Section 9. In a subsequent article we will give another 
extension to GM and compare it with other categories of generating methods. 

2. U N I V E R S A L  C L I F F O R D  A L G E B R A S  

A universal CA of  order n is a real algebra on a linear vector space 
with n basis elements: 

! C,(p,  q): {001,0"2, . . . ,  O ' p ,  00p+1', �9 �9 . , O'p+q=,} (1) 

These elements anticommute with each other, 

00i00j + 00p'i = 2g~l (2) 

where gij is the metric tensor: 

O, i ~ j  

glj = 1, i = j <- p 

-1 ,  i = j > p  

(3) 

Sometimes we use e instead of 1 for the unit element. 
For our purpose it will be convenient to write AS instead of C,(p,  q), 

where the signature index s is defined by 

s = p - q  (6) 

so, accordingly, 

(00,)2= 1, i =  1 , 2 , . . . , p  (4) 

(00j)2 = - 1 ,  j = p + l , p + 2  . . . . .  p + q = n  (5) 
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For each order n, there are n + 1 different signature indices differing by 
steps of two in the range 

- n<- s<-n  (7) 

and s is an even or odd integer depending on n being even or odd. 
In Li et al. (1986) we showed that the properties of a particular CA 

depend critically upon the canonical element o-(n), which is defined as the 
product of the basis elements 

o ' ( n )  = o 1 o " 2  �9 �9 �9 O r p O ' p +  1 �9 �9 �9 O'p+q n ( 8 )  

The canonical element commutes with all of the basis elements when n is 
odd and anticommutes with all of them when n is even. It has a positive 
or negative square of unity depending upon the value of the signature index 
s in accordance with the following rules: 

{ 11 when s = 0 o r l ( m o d 4 )  
[~ - when s = - i  or 2 (mod 4) (9) 

3. GENERAL GENERATING METHOD 

In Li et al. (1986) we showed that the basis elements of a higher order 
CA A~,+n may be generated from a lower order one by forming direct 
products of the basis elements s of an even-order algebra A~, with those 
rk of another algebra A'n. We presented two general procedures (and there 
are only two !) for the systematic construction of the basis elements of A~+n. 
Note, as indicated above, that for the even algebra Am the canonical element 
o-(m) anticommutes with all of the basis elements and has a square that 
equals e or -e ,  so it can be treated on the same footing as other basis 
elements in the construction procedure. Therefore, we introduce the notion 
of a "primitive generating set" (PGS) that comprises the following m + 1 
elements of the even-order algebra Am : 

s when k = i , j < - m  
(lO) 

(o-(m) when k = m + l  

Then the first procedure consists of forming direct product sets of 

P[EkoX]: {Ego• j = l , 2 , . . . , n  

{Ek• k = l , 2 , . . . , m + l ,  k ~ k o  (11) 

where e~ is the unit element of An and k0 is fixed for the particular procedure, 
characterizing the basis set thus formed. The second procedure consists of 
forming the direct product set of 

p[• {~k X ~-o}, k = l , 2 , . . . , m + l  

{e~ x ~)}, j = 1, 2 , . . . ,  n, j #Jo (12) 
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where e~ is the unit element of  the algebra Am. The final CA is clearly of 
order m + n. As for the signature index w, it is related to that of  A~ and 
A', as well as the characteristic element chosen for the procedure, namely 
Y~kO or Zjo. The various possibilities are listed in Tables I and II of  Li et al. 
(1986). 

Note that the reversed procedures such as 

P[xXko]: {%X2~kO; e.rXXk} ( l l a )  

P[zjoX]: {ZjoXXk; zjxe~} (12a) 

are not counted as new procedures, as these are equivalent to (11) and (12) 
in the sense that their differences may be reduced to the differences in the 
definitions of matrix direct product, either left product  or right product. In 
applications both sets are widely used. 

By selecting m = 2 we obtained (Li et al., 1986), a hierarchy of every 
kind of  higher order CA. 

4. EXTENDED GENERAL GENERATING METHOD 

In the restricted generating method the last element Orm§ 1 of the primi- 
tive generating set from the algebra A~ is the canonical element or(m). The 
idea of  the extended generating method EGM is that we drop this restriction, 
allowing Z,,+I to be either tr(m) or io'(m). Of course, in this way the 
corresponding "nonstandard"  primitive generating set (NPGS) may develop 
a larger algebra Am+l than the original one A,,, as when •m+l = icr(m) and 
m is even. However, we do not need to worry about this, because what 
concerns us is the final algebra that is constructed. This being understood, 
the procedure of forming direct product basis elements becomes consider- 
ably simplified; it is no longer necessary to specify a procedure with a 
signature index s and the eight cases listed in Table I of Li et al. (1986) 
reduce to the four cases of  Table I of the present paper. 

Table I. Characteristics of  the Four Procedures for Generating Higher 
Order Clifford Algebras by the Formation of  Direct Products Using the 
Nonstandard Primitive Generating Set E(,.+l) with Signature Index s ' =  

p ' -  q', and the Algebra A'. with Signature Index t = u - v 

Final Final signature 
Procedure signature (p, q) index w ( = p - q )  

P ['~'k0] ( p ' + u - -  1, q'+v) s '+t--1 
P [ ~ o  • ] ( p ' +  v, q '+  u - 1) s ' -  t + 1 
P[XTio ] ( p ' +  u - l ,  q ' + v )  s ' + t -  1 
P[Xr~o ] ( q ' + u , p ' +  v ' -  1) - s ' +  t +  1 
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Note that we are dealing with nonstandard primitive generating sets 
s of  m +  1= odd elements having p '  positive squared ones and q' 
negative squared ones. Here p '  and q' are not the same as the p, q of  the 
original algebra A~ from which E~m+l) is constructed. Am is of even order, 
but the procedure (11) and (12) always gives 

s' t w E(m+l ) X An = Am+n (13) 

with s : {s s  Em; Era+l}, Ei<m+l = Cr~ or %, or E,,+I = or(m) or 
itr(m). Of course, if we take E,,+~ = kr(m), then E(r~+l) would develop an 

s, A=+I algebra, whereas if we take ~:m+l = tr(m), then E(m+l~ would develop 
an AS,, one. In either case equation (13) is obtained. As for the signature 
index s' of  the primitive set E(,,+~), it is defined in the same way as for a 
Clifford algebra: s ' = p ' - q ' ;  however, it is a characteristic of ~' E(m+l), not 
of  A~. 

As can be easily verified, the great simplification is due largely to the 
inclusion of  Em+l as an independent member when calculating s' = p ' -  q' 
of  s (but not of A,~ !). On the other hand, Table I is independent of 
E,,+~ being tr(m) or io'(m). Yet the inclusion of &r(m) as another alternative 
makes the procedure more flexible and the comparison with other construct- 
ing methods straightforward, as will be seen in the following sections. 

As an example, we give in Table II the various NPGSs of A~ {o-1, tr2} 
for the case m = 2. Note that since the basis elements of  a Clifford algebra 
are defined up to a sign • we are free to choose •  or • for 
s and in the table we select all ~3 to be positive. 

Thus, to construct a hierarchy of Clifford algebras we need only one 
s '  t - -  z S s ' + t - - 1  w procedure P[XkO• and where P[E(3) • A,]  - . .~+2 = A,+2: 

( A t + 2  | ~ , + 2 : s ' = 3  (L) (14) 

,~.+2as'+'-'=~A~+2: s ' = l  (M) (15) 
[A'.+2: s ' = - I  (R) (16) 

Figures 1 and 2 provide the hierarchies of even- and odd-order Clifford 
algebras, respectively. The letters L, M, and R, respectively, denote generat- 
ing the algebra A.+z from A'. by moving down to the left (L, w =  t+2) ,  
directly down (M, w = t), or down to the right (R, w = t - 2 )  on the figures. 

Table II. The Nonpr imi t ive  Genera t ing  Sets s o f  the second-order  algebra A~ 

Algebra  NPGS (Z1, s s (p', q') s' 

Ag E~3): (o"1,0"2; 0" 3 = -itrlo.2) (3, 0) 3 
A2 2 s (0"1,0"2; o'~ = o.to.2) (2, 1) 1 
A ~ s (o.,, r = io. 2 ; o.~ = -i~r,o.~) (1, 2) - 1  

A 2  2 ~ , ~ :  (o.~, O'~ ; o.~ = --o.~ O'~) (0 ,3 )  - 3  
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A~ 

4 A~ A~2 

Fig. 1. Hierarchy of even-order Clifford algebras formed by the extended generating 
procedure. 

The posi t ion o f  an algebra in these hierarchies can be written down  in 
a very compac t  form in terms of  the left L, middle M, and right R operations.  
For  the even-order  case we have 

A2W~ = LW/2M"-Iwl /2A ~ w >- 0 (17a) 

= R-W/2M"-k~I /2A  ~ w <- 0 (17b) 

A~ A~I 

A~ A~ A;1 A;3 

A~ A~ A~ A? A~3 A? 

4 A~ A~ A~ A~ A? A~ A~7 
Fig. 2. Hierarchy of odd-order Clifford algebras formed by the extended generating procedure. 
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where L w/2 = R -w/2 and in actuality both equations are valid for the entire 
range of values of w, namely -n -<  w-< n. For odd order n it is convenient 
to write 

A2Wn+a = L(W-l) /ZMn-lw-l l /ZA~,  W--> 1 (18a) 

A2W+l = R-(w+' ) /2M"-b~+l l /2A7 ~, w-< -1  (18b) 

but this time the two equations are valid only for their own range of values 
of w. Besides, they differ in their starting algebras. The operators L, M, and 
R, of course, all commute with each other. As examples, consider 

4 L Z M A  o A6 = 

A73 = R M Z A ~  1 

Expressions (17) and (18) locate a particular algebra A,~ in the hierarchy 
by the number of moves to the left and down (L), directly down (M),  and 
to the right and down (R) from the position of the starting algebra A ~ or A1• . 

Now expressions (17) and (18) can be put into one compact expression 
if we introduce the "modified Gauss symbol" 

r X 
[x] -=~-~ []x[] (19) 

where [x], the Gauss symbol, means the largest integer part of X. Thus, 
for example, 

[~]':[~-1=3 

[ -~] '=  (-1)[~] = -2,  whereas [_5] = -3  

Then, converting all R operators to L operators through the expression 
R x=  L --x, we arrive at a single compact formula in place of expressions 
(17) and (18): 

A,,,w = l-,r['/=]' ~v~'rtm/2]-lEw/2YlaS(w),~ls(w)] (20a)  

or for characterization simply 

A~ =: {[w/2]', [ m / Z ] -  [ [w/Z]'[; S(w)} (20b) 

where 

0,  W e v e n  

�9 S ( w )  = 1, w positive odd 

-1 ,  w negative odd 
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4 
R~ R~ H22 

H 4 R~ R 0 H42 

Fig. 3. Hierarchy of even-order Clifford algebras formed by the extended generating procedure 
and written in a notation that distinguishes the real field (R) from the Hamilton quaternion 
(H) types. 

5. PRIMITIVE GENERATING SETS 

The extended generating method uses a direct product  combination of 
s '  a nonprimitive set ~(m.~) of  basis type elements of the Clifford algebra A', 

to provide a basis for the generated algebra A~+, .  Under certain conditions 
this generated set of m + n elements will constitute the true basis for algebra 
AW+n, and in this case it is referred to as a primitive basis set. Under other 
conditions the generated elements must be modified to convert them to true 
basis elements, and when this occurs the set is called nonprimitive. Whether 
the generated set is primitive or not depends upon the type of algebra that 
is formed, and so, before preceding, we will say a few words about the 
various types of algebras and how they fit into the hierarchies displayed in 
Figures 1 and 2. 

We present in Figures 3 and 4, respectively, the Clifford algebra hier- 
archies of even order and odd order written in a notation that designates 
their carrier fields (Li et al., 1986; Porteous, 1969; Poole and Farach, 1982), 
namely the real numbers (R), the complex numbers (C),  and Hamilton's 
quaternions (H).  The even-order algebras are based on the real number 
and quaternion fields and half  of the odd-order algebras are based on the 
complex number field C. The remaining odd-order algebras are of the 
double-field type :R or 2H based on the real number and quaternion fields, 

C;I 2,;3 
C75 2R~7 

Fig. 4. Hierarchy of odd-order Clifford algebras formed by the extended generating procedure. 
There is a complex number field type (C) and 2 two double-field real (R) and quaternion (2H) 
varieties. 
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respectively. We will now examine how the primitivities of the generated 
basis elements are related to the algebra types in these hierarchies. 

The inequivalent irreducible representation of  a Clifford algebra A'n of 
even order n is a set o f 2 " / 2 x 2  n/2 square matrices (Li et al., 1986; Porteous, 
1969; Poole and Farach, 1982). The operations L, M, and R generate the 
algebras A]+2 from At with w = t, t + 2 by forming a new set of w matrices 
of  size s (n+2~/2 x 2 ("+2~/2. All of the involved algebras are of type R or H, 
so the set of  n + 2 matrices that is formed is primitive and hence constitutes 
a true basis without any modifications or additional operations. Thus, there 
are no complicating factors in this procedure for generating even-order 
algebras. 

The situation is more complicated with odd-order algebras. When the 
generated algebra AW+2 is a complex number field type CW+2 then the basis 
set which is generated is a true basis for the algebra and we call it a primitive 
basis. This is not the case with a generated double-field algebra 2 w Rn+ 2 or 
2 w 
Hn+ 2 for which the basis is nonprimitive. Such a nonprimitive basis forms 

an algebra in which each element of the next lower-order even algebra R~,+~ 
or H~,+~ appears twice, hence the name double field. For example, the 
double-field algebra A3 3 = 2H33 has the three primed Pauli matrices 0-j = i0-j 
as its nonprimitive basis. These generate an algebra with the following eight 
elements: 

Unit element I 

Basis elements o-~, 0-~, 0-~ 
(21) 

Binary products 0-~0-~=0-~; 0-~0-~=0-~; 0-~0-~=0-~ 

Ternary product 0-'~o-~o-~ = 0-(3) = I 

We see that each element of this double-field algebra appears twice. 
A primitive basis s  for this double-field algebra 2H33 can be formed 

from the following reducible (already reduced) representation (Porteous, 
1969): 

which has the three binary products s163 

the ternary product or canonical element, 

,,,(/oi) s163163 = 

, , ,  (0-; 0,)(23) 
s163 = 0 o" 3 

(24) 
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and the unit element (~ o). All eight elements of this representation are 
different and all eight are in the reduced or diagonal form which is charac- 
teristic of a double-field algebra. In like manner, the double-field algebra 
2R~ with the nonprimitive basis o'l, 0-2, o-~ can be generated from the 
following primitive basis set: 

~1 : (O1 00.1) ' ,~.2 = (O2 00.2) , ~ _ (O  ~ __00.~) (25) 
using the same procedure. 

We infer that a general odd-order double-field algebra of either the 
2R,~ or 2H~ type which has the m nonprimitive basis elements ~ has a 
corresponding primitive basis set of the type 

5;j=(~J -~'J0)' j = a , 2 , . . . , m  (26) 

When our extended generating method is employed to form such a double- 
field algebra, then the resulting nonprimitive basis set rj can always be 
converted to a primitive basis via the prescription of equation (26). For 
example, the Dirac algebra 2H~ with the nonprimitive basis set 

3'1 0 } '  3'2 0 ] '  3'3 

3'4 = (~ ?I) '  3'5 : (01 ~) 
(27) 

formed from the primed Pauli matrices 0-j has the following five primitive 
basis elements Ej: 

2~=(7 j  0 ) j = 1 , 2 , 3 , 4 , 5  (28) 
0 -% ' 

Dirac-type algebras of even order A TM4 will be discussed below in Section 7. 

6. COMPARISON WITH PREVIOUS GENERATING METHODS 

The general generating method for Clifford algebras that was developed 
in Li et al. (1986) defined the left (L'), middle (M'), arid right (R') generating 
operators as follows: 

t t A t + 4  L An = ,  -~+2 

M'At ,  = Atn+2 (29) 
t t t - - 4  

R A ,  = An+2 
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[in Li et al. (1986) the prime notation was not used with L, M, and R]. 
These operations transform an At~ algebra into an A~'+2 algebra where 
w -- t, t + 4. This means skipping a column in the hierarchies of  Figures 1 
and 2. In the present work the analogous left (L), middle (M),  and right 
(R)  generating operators act as follows: 

LAth - at+2 - -  z a n +  2 

MAt,, = At,,+2 (30) 

RAt , - 2  = A n +  2 

corresponding to the generation of an (n+2) th -o rde r  algebra A~+ 2 of 
signature index w = t, t +2  from the nth-order algebra At,. Note that the 
two middle operators are identical ( M  = M') .  These L, M, R EGM operators 
permit all of  the even- and almost all of  the odd-order algebras to be 
generated from either All or A~ -a. We say "a lmost  all" because the A w 
algebra cannot  be so generated from A~ ~, and the A ;  w ones are inaccessible 
to AI.  Thus, it is advantageous to use L, R instead of  the earlier operators 
L', R' ,  which skip every other column in the generating process. 

The difference between the previous L', R '  and the present L, R 
generating operators is particularly striking in the odd-order  case. We see 
from Figure 4 that the earlier operators L' and R '  converted C-type algebras 
to higher order C-type ones, and double-field algebras to higher order ~ 

/ ~  t •  double-field ones. More specifically, both L' and  R '  convert Ct, to ,~,+2, 
ZR., to 2ut• n+2, and Hi,, to --.+2.J~t• The present left L and right R operators 
convert a complex number  algebra Ct, to a double-field type 2Rn+2t:t-2 or 2/_/n+2rrt• 
and the double-field algebras 2 R t  n and 2 t r~,• H~ to complex number  ones ,~,+2. 
The significance of this was explained in the previous section. 

7. C O M P A R I S O N  W I T H  O T H E R  G E N E R A T I N G  M E T H O D S  

(1) The method of Brauer and Wey (1935; see also Boerner, 1955, 
Chapter  VIII ,  Section 3; Carson, 1953, p. 164). 

(a) Even-order case A2~: From (18) we see that A~,~ = LnA~ and from 
Table I I  we have ~3)  = {0-1,0-2, o-a}, where 0-1, o-2, 0"3 are the Pauli matrices. 
For the procedure P[~kO X ] to generate the algebra A~+n = A 4 from A~, = A22 
and Atn = A~, we take Ego to be 0-3 = -o-(2) = -i0-10-2 = ~2+1, the original A~ 
being A22{0-1, 0-2}. Then from (11) we have rl = 0-~ and ~'2 = 0-2, and the basis 
elements of  A 4 are 

{Eko x ~} ~ o" 3 x 0-~ o- 3 x o- 2 

{ ~ k  X e,} ~ o'1 x e 0-2 x e 
(31) 
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These four  elements  are the basis elements of  A 4 and  will be t reated as zj 
e lements  in the next  step of construct ion.  Starting from A 4, by apply ing  
one more L procedure  we generate the a lgebra A~,+, = A 6 using the same 

XkO = 0"3. Note  that  this t ime for e, we have e~ = e x e; therefore 

{ ~ k 0  X l"j} "-> 0" 3 X 0" 3 X 0" 1 0"30" 3 X 0" 3 

0" 3 X 0-1 X e 0- 3 X 0" 2 X e 

{Xk X e,}--> 0-1 x e x  e 0-2x e x e 

Fur ther  cons t ruct ion  of the algebra A~ from A 6 using the same n o n s t a n d a r d  

primit ive genera t ing  set X3 clearly preserves the same pat tern:  

0" 3 X 0-3 X 0" 3 X 0-1 

0"3x 0-3 x 0-1 x e 

0"3x 0-1 x e X e 

0 " ~ x e x e x e  

0"3 x 0-3 x 0-3 x 0- 2 

0"3 x 0-3 x 0"2 x e 

0-3 x 0-2x e x e 

0 " 2 x e x e x e  

A 2 .  �9 and  we have finally two sets of n basis e lements  each for the algebra 2,.  

~ j :  {0-3 X O'3 X " " " X 0 - 3 X  0 - 1 X  e X ' '  . x e }  
(32) 

/3j: {0-3 x 0-3 x .  �9 �9 x 0-3 x 0-2x e x �9 �9 �9 X e} 

A 2 n + l  (b) Odd-orde r  case .~2n+1: Since we are deal ing with a real algebra,  
A 2 " + l  i s  t h a t  the two sets aj,/3j and  i a j ,  i [3 j  are independen t .  The basis for znt2n+l 

of A2~, namely  the ay,/3j of  (32) plus 292,+1 , which is i t imes the canonica l  

e lement  0-(2n). In  other  words,  Y.2,+l = i0-(2n), so we have 

X2.+1 = i a l a 2  " " " O l n f l l f l 2  " " " f i n  

= i ( - - 1 ) ( n - - ~ ) 2 / 2 O q f l l O ~ 2 f l  2 " " " O Z . ~ .  

= i(--1)(~--1)V2(--1)"0-3 X 0" 3 X" �9 �9 X O'3 

= (--1)("2+1)/2i"+10-3 X O" 3 X" " " X O" 3 

= 0-3 X O-3 X �9 �9 . X 0 - 3  

irrespective of whether  n is even or odd, where a possible u n i m p o r t a n t  +1 
sign is neglected.  Now, clearly the NSPGS {~1, X2, �9 �9 �9 ~2. ; X2.+~} develops 

1 A 2 n + l  the alge0ra ~2,+1. This is essentially the same as in Brauer  and  Weyl (1935). 
(2) The method  of Srivastava (1982) for even algebras. There are two 

am+2 = A22 x A~ through cases to consider.  For  m = 0 (mod 4), we construct  . . , ,+2 
the procedure  P[x~'jo], and  for a representa t ion of A 2 we take the real 
algebra A2{oq, 0-3}. Hence  

~ 'k  X 0" 3 ; 1 x 0"1 (33) 
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where for the basis elements of A~ we follow Srivastava and use fig, so 
Ek =- flk (k = m); Em+l = o-(m) = fllfl2" " " tim, and (E,,+I) 2 = 1 [cf. Li et al., 
1986, equation (23)]. 

For m = 2 (mod 4) we have [o'(m)] 2= - e ,  and to form a restricted CA 
with 2 o-i = 1 for the entire basis we must choose Em+l -= io '(m) = ifll/32" �9 �9 
and then proceed as above. 

For comparison with Srivastava's results, we must make use of  the 
left-hand direct product definition 

A_B_ LL _ AB!2_  L_" _" _A_ _Bj ,, 

A x B --- . . . . . . . . . . . . . . . . . . .  (34) 

ABnl  . . . . . . . . . .  A B , ,  

and equation (33) assumes the form 

0] +, 0 ]  [010] 1 A"~-22: -13, ' -Em+l ' 

which is identical with that in Srivastava (1982). 
(3) The method of  Ramakrishnan (1970). This is essentially our exten- 

ded procedure 

g(3) x A .  ~ A n +  2 

with E(3): {oq, 0.2, o-3}. Applying procedure (11), choosing Eko to be 0.1, we 
have 

{0- I x ~J') ,  0.2 x I ,  0" 3 x i }  (36)  

Actually, this is enough, but Ramakrishnan gives (36) only through its linear 
combination: 

( . ) - -L  , ,k -k  (37) 
k 

These results mean that we have a linear combination of  order n +2: 

/~(n+2) = 0"1 X/~(n)-t- hn+10" 2 X 1 + }i.n+2G 3 X 1 
(38) 

= [  A n + 2 1  L ( n ) - i A . + l l ]  

kL(n)  + iA.+ll -A.+21 

where the "right direct product"  definition is being followed. Once equation 
(38) is formed from L ( n ) ,  then (36) is uniquely determined, as was explained 
by Ramakrishnan (1970). 

(4) The method of our previous work (Poole and Farach, 1982). 
Let the PGS be E(3):  0.3, 0.1; 0"2}, S = 1, and take E~,o- 0.'~= io '2;  then 

procedure (11) gives 

{0.-~ X 1'~ ; 0" 3 X 1, 0"1 X 1} (39) 
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In matrix form, using the right direct product, we have 

A _ t +  2 0 _ ( n + 2 )  - -  . 

, - . + 2  : ~ d ~ =  - ~ ' k ( n )  ; " " + ~  - - ' 

( 4 O )  

n + 2  ~ " " " 

where t is the index of A, ; see Table I for P[E~oX]. According to Poole 
and Farach (1982), we first keep n odd and construct all odd-order CAs. 

_ ( n + 2 )  Then, simply by dropping the last basis element rn+2 , we arrive at the 
corresponding lower-order even algebras. This gives Table III of Poole and 
Farach (1982). In this way we obtain [r~_<+))] 2= -[r(~)] 2 from the table of 
Poole and Farach (1982). The advantage of  this approach is that we have 
exclusively real representations. If  we want to stick to the restricted CA, 
we must use 0-2 instead of o-I as Y.ko- 

These few examples examined above suggest that many more varieties 
of  generated algebra forms could be obtained just by applying different 
procedures, different choices of characteristic elements, and different ver- 
sions of the direct product. Our comparisons demonstrate their equivalence 
to our method. 

8. THE DIRAC MATRICES A N D  E D D I N G T O N ' S  E N U M B E R S  

Because of their importance in physics, the Dirac matrices deserve 
special treatment, and we will show that every well-known type of rep- 
resentation is just a variant of the six versions which follow directly from 
our EGM. 

Of course, we are here dealing with equivalent representations, as there 
is only one inequivalent irreducible representation of  the Dirac algebra (Li 
et  al., 1986). We choose representations which are convenient for physics, 
namely those which use Pauli matrices as building blocks and treat the 
three Dirac matrices y~, y2, ")/3 on the same footing. 

Upon inspecting Table I and keeping in mind that the three Pauli 
matrices are to be treated on the same footing, it is evident that we must 
follow the procedure 

P[~:~;~ x ",M (41) 

with s '=  -3  and, from Tables I and II, the signature index w = t - 2 .  Now 
the Dirac algebra belongs to the H-type algebra A42, since for the basis 
yg = 1, y~ = - 1  for k = 1, 2, 3, and hence t = 0, so there are only six possible 
choices of basis elements for A ~ in terms of Pauli matrices s and 0-~,2,3. 
This makes a total of six equivalent representations of y ,  that are generated. 
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They are as follows: 

(a) A~ {0-~, 0-2}: Z~3)= {0",, 0-2, 0-3}: ~';o--- 0-~. 

From (41), it follows that A42: {Ok X 0-~, 1 X 0-2} is generated with the follow- 
ing matrix forms, using the left direct product of equation (34): 

[0 : ]  [0 /ol ~,~3 (4~) 7~ il ; 7k= i0-k 
The three matrices -iTk are often called the ak matrices (Poole and Farach, 
1982; Arfken, 1985; Schiff, 1949; Schweber, 1962, pp. 69, 79). 

(b) A~ {o'2,I 0"1}, ~ 3 ) =  {0-1, 0"2, O'3}, Tj0' ---- 0"2" ! 

Similarly, using the left direct product, we obtain 

A42: {ok x 0"~; 1 x 0"1} 

It ~0] [0 ol, ~_-,,~,3 (43) 7o = ; 7k = --0-k 
This is the Weyl representation used, for example, by Schweber (1962). 

(c) A~ {0-I, 0"3}: Likewise, we have 

A22: {0"k x 0-~, 1 x 0-3} 

['o ~] [o ~] 7o= - ' --0"k ok , k = 1 , 2 , 3  (44) 

the matrix 70 is sometimes called fl (Arfken, 1985; Schitt, 1949; Schweber, 
1962). This is the Pauli representation mentioned, for example, by Roman 
(1969, p. 615). 

(d) A~ {0-:~, 0"3}: 
A42: {0-kX0-J;lx0-2} 

[ 0 0  1] [iok 0 ] k = 1 , 2 , 3  (45) 7o= il ; 7k= --i0- ' 

These 7k matrices are sometimes called iSk (Poole and Farach, 1982; Arfken, 
1985). 

(e) A~ {O-L, 0-1}; 

A4~: {o'~ x 0-:~, 1 x 0-,} 

[ t  10] [i0-k 0 ] ,  k = 1 , 2 , 3  (46) 
7 0  "~ ; 7 k  = 0 - -  i0-  k 
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We again have 8k =--iyk for the basis (Poole and Farach, 1982; Arfken, 
1985). 

(f) A~ 

A42: {o'k x 0-~, 1 x 0-3} 

[10 01] [ 0 iok ] k=1 ,2 ,3  (47) 
"YO = _ ; ")/k = i0"k ' 

Again we have /3 = %  (Ramakrishnan, 1970; Arfken, 1985; Schiff, 1949) 
and O~k = iyk (Srivastava, 1982; Ramakrishnan, 1970; Arfken, 1985; Schiff, 
1949). These expressions (42-47) are the popularly used sets of the Dirac- 
type matrices (Arfken, 1985). 

There are other CAs equivalent to the Dirac algebra. An interesting 
example is Eddington's E numbers (Roman, 1969; Eddington, 1946), which 
can be given in terms of Pauli matrices 0"i as follows (Eddington, 1946): 

(o)  ) ( ) 1 1 0 E2 = f i0- 3 0 E3 = 0 - 0-2 
E1 = i0"1 ' ~ 0 i0"3 ' 0"2 0 ' 

E4 = (i02 _ 0  )io.2 , (E~)2=_l,/z= 1,2,3, 4 (48) 

This Eddington algebra is A4 4 and comparing Figures 1 and 3, we see that 
it is equivalent to A22, both being of type H. The E numbers are constructed 
through our procedure starting from 

A2: {0"2, 0-3} and E ~ :  { i 0 - 2 ,  i 0 - 1 , i 0 - 3 }  

and choosing "Y.~o to be io-2; then it follows from (11) that 

{ {0-2} [i0-11 } P[E~0x]: io-2 x �9 x 1 (49) 
0"3 ' I. i0-3J 

Written in matrix form, (49) is just (48) provided the left-hand direct product 
is understood. 

Finally, for the interesting Majorana representation of the H-type 
algebra A42 we have to follow the P[EoX] procedure with 

E ~  = {0"~, 0"2, 0"~}, ZkO = o'2, and A~ {oq, 0-I} 

Thus 
t . t l P[Ek0 x ] = {0-2 X o'l, 0-2 X o'2, 0" 3 X 1, or 1 X 1} ( 5 0 )  

If the left-hand direct product is used, these assume the same form as that 
given in Bacry (1977, p. 402), except for the unimportant sign of + 1. Because 
of its pure imaginary nature, the Majorana representation is important for 
discussions connected with charge-conjugation transformations. 
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The Majorana (1937) algebra, however, is different from the Dirac 
algebra. In our notation it is A24. To obtain its matrix representation, we 
take the NPGS Y.~3~ = {0-1, o'2, 0"3} as the generating set and A~ {0-~, o-2} as 
the starting algebra. Then the application of procedure P[s • gives, 
according to Table I, an index of w = 3 + 0 - 1 = 2. Specifically, if we choose 
3ZkO = O'2, then procedure (11) gives 

For comparison, we apply the le•hand direct 
(51) assumes the following form: 

a~: (0.02 O ~)' (o-0~-0-~0 ,/' (O 1 O1)' (03 0-03) 

(51) 

product (34), and 

(52) 

which, except for an unimportant difference of sign, is the same as that 
given in Table I of Salingaros and Dresden (1983). 

9. CONCLUSION 

In this article we have developed a systematic procedure for generating 
a Clifford algebra of an arbitrary order and any desired signature index. 
We believe that the potentiality and flexibility of the new method are quite 
clear, but its most important advantage is that it provides a systematic 
approach for constructing a representation of any order and index with the 
required properties, such as unitarity and Hermiticity. This advantage was 
illustrated by presenting the procedures which correspond to several generat- 
ing methods proposed by others, and by forming the Eddington E-number 
matrices, the Majorana algebra, and various versions of the Dirac-type 
matrices which have been widely used in theoretical physics. 
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